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� Liver organoids from patients with BA exhibited aberrant mor-

phology and disturbed apical-basal organization.

� Transcriptomic analysis of BA organoids revealed a shift from
cholangiocyte to hepatocyte transcriptional signatures.

� Beta-amyloid accumulationwas observed around the bile ducts in
BA livers.

� Exposure to beta-amyloid induced aberrant morphology in con-
trol organoids.

� Beta-amyloid accumulation represents a novel finding with
pathobiological implications and diagnostic potential for BA.
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Lay summary
Biliary atresia is a poorly understood
and devastating obstructive bile duct
disease of newborns. It is often diag-
nosed late, is incurable and frequently
requires liver transplantation. Using
human andmouse ‘liver mini-organs in
the dish’, we unexpectedly identified
beta-amyloid deposition – the main
pathological feature of Alzheimer's dis-
ease and cerebral amyloid angiopathy –

around bile ducts in livers frompatients
with biliary atresia. This finding reveals
a novel pathogenic mechanism that
could have important diagnostic and
therapeutic implications.
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Background and Aims: Biliary atresia (BA) is a poorly under- transplantation. Using human and mouse ‘liver mini-organs in

stood and devastating obstructive bile duct disease of newborns.
It is often diagnosed late, is incurable and frequently requires
liver transplantation. In this study, we aimed to investigate the
underlying pathogenesis and molecular signatures associated
with BA.
Methods: We combined organoid and transcriptomic analysis to
gain new insights into BA pathobiology using patient samples
and a mouse model of BA.
Results: Liver organoids derived from patients with BA and a
rhesus rotavirus A-infected mouse model of BA, exhibited aber-
rant morphology and disturbed apical-basal organization. Tran-
scriptomic analysis of BA organoids revealed a shift from
cholangiocyte to hepatocyte transcriptional signatures and
altered beta-amyloid-related gene expression. Beta-amyloid
accumulation was observed around the bile ducts in BA livers
and exposure to beta-amyloid induced the aberrant morphology
in control organoids.
Conclusion: The novel observation that beta-amyloid accumu-
lates around bile ducts in the livers of patients with BA has
important pathobiological implications, as well as diagnostic
potential.
Lay summary: Biliary atresia is a poorly understood and devas-
tating obstructive bile duct disease of newborns. It is often
diagnosed late, is incurable and frequently requires liver
words: Liver disease; Bile duct; Cholangiopathy; Organoid; Amyloid;
splantation.
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the dish’, we unexpectedly identified beta-amyloid deposition –

the main pathological feature of Alzheimer's disease and cerebral
amyloid angiopathy – around bile ducts in livers from patients
with biliary atresia. This finding reveals a novel pathogenic
mechanism that could have important diagnostic and thera-
peutic implications.
© 2020 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Biliary atresia (BA) is a devastating inflammatory cholangiopathy
affecting 5–14:100,000 live births and is a predominant cause of
prolonged neonatal jaundice.1–3 BA affects the cholangiocytes of
the liver both in the intrahepatic and extrahepatic biliary tree,
leading to obstructed bile flow, progressive fibrosis and a sub-
sequent breakdown of the bile duct system. As a first line
treatment, patients with BA undergo Kasai portoenterostomy, in
which bile duct tissue up to the porta hepatis is removed and a
loop of jejunum is attached forming a portoenterostomy (for
review see4). However, for many patients with BA, liver trans-
plantation is the final outcome.

Diagnosis of BA is problematic. Missed or late diagnosis of BA
leads to rapid liver deterioration, with liver transplantation the
only remaining option. Hence, improvements in BA diagnosis are
warranted (for review see1,5). However, poor understanding of
the underlying pathogenic mechanisms of BA has led to slow
progress in the field of diagnostics. Although BA affects
>5:100,000 live births, it is not characterized by a strong genetic
component: >90% of the cases are non-familial and without a
clear genetic link (for review see6). Susceptibility loci have been
identified on chromosomes 10q24.27 and 2q37.3,8 and later, the
ADD3 and EFEMP1 genes were identified as aberrantly regulated
in BA.9,10 Recently, mutations in the polycystic kidney disease 1
like 1 (PKD1L1) gene were also discovered in patients with BA
splenic malformation syndrome, a form of BA with splenic ab-
normalities.11 It is likely that BA has multiple etiologies, with
20 vol. 73 j 1391–1403
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viral infections, exposure to toxins and a dysfunctional immune
response likely to contribute by causing inflammation and
driving BA pathogenesis. Notably, mice infected by the rhesus
rotavirus A (RRA) immediately after birth develop a BA-like
phenotype,12 and this model is widely used to study BA in an
experimental in vivo setting.

In this report, we explore BA pathobiology through a com-
bination of organoid and transcriptomic analyses. We find that
liver organoids established from patients with BA, as well as
from RRA-infected mice, exhibit aberrant morphology and
apical-basal organization. Transcriptomic analysis revealed a
partial shift from a cholangiocyte towards a hepatocyte tran-
scriptional profile as well as changes in expression of genes
related to beta-amyloid biology. We also observed beta-amyloid
deposition close to bile ducts in patients with BA, which repre-
sents a novel pathobiological feature.
Materials and methods
Human liver tissues and liver organoid culture
Wedge liver biopsies (2–3 mm3) were obtained from non-
syndromic patients during laparoscopic cholangiography, and
from pediatric patient controls (choledochal cysts [CC], chole-
stasis [CS] that were confirmed non-BA, non-tumor margin of
hepatoblastoma [HB]). All tissues were obtained during opera-
tions with full informed consent from parents or patients, and
the study was approved by Hong Kong West Cluster-Hong Kong
University Cluster Research Ethics Committee/Institutional
Review Board (UW 16-052).

Liver tissues were digested to single cells on gentleMACSTM

Octo Dissociator (Miltenyi Biotec Inc. CA, USA), and EpCAM-
positive cells were sorted on an MS column following the
manufacturer's protocol (Miltenyi Biotec Inc. CA, USA). EpCAM-
positive cells were then mixed with Matrigel (356231; Corning
Biocoat) and seeded onto 4-well plates to generate organoids.
See Supplementary Materials and Methods for details on the
liver organoid generation, passaging and freezing.
Generation of RRA-infected mice
The RRA strain MMU 18006 was purchased from ATCC (Mana-
ssas, VA). The neonatal BALB/c mice were injected with 20 ll of
1.5 × 106 PFU/ml RRA (RRA group) or supernatant of MA104 cell
culture medium (control group) intraperitoneally within 24 h of
birth. Mouse liver organoids (RRA group and control group) were
established using the same protocol as used for human liver
organoids, except mouse CD326 (EpCAM) MicroBeads (130-105-
958) were used to sort EpCAM-positive cells. All animal experi-
ment protocols were approved by the Committee on the Use of
Live Animals in Teaching & Research, The University of Hong
Kong (CULATR No.: 4116-16).
Transcriptome sequencing and analysis
Organoids from controls and BA livers were retrieved from
Matrigel to individual tubes (1 organoid per tube) for bulk RNA
sequencing. See Supplementary Methods for details on the
analysis of transcriptome sequencing data on the quality filtering
of raw reads, transcriptome mapping/alignment with genome
reference, counting of aligned reads per gene, normalization of
gene expression count data, identification of differentially
expressed genes and visualization.
1392 Journal of Hepatology 20
10x sample processing, sequencing and analysis
Single cells from passage 0 (P0) organoids from 2 control pa-
tients (HB) were prepared. The processing of organoids for
single-cell RNA sequencing analysis and the single-cell tran-
scriptome data analysis were detailed as shown in the
Supplementary Materials and Methods.

Treatment of human liver organoids with beta-amyloid
Beta-amyloid protein fragment 1-42 solution (AB9810, Sigma-
Aldrich, St. Louis, USA; 1 mM in DMSO) was added to suspension
of control (HB) organoid cells (final concentrations: 50 nM and
100 nM). The medium was changed with corresponding con-
centrations of beta-amyloid protein fragments (50 nM and 100
nM) and control (DMSO) every alternate day.

Immunostaining analysis
Liver tissues (HB, n = 5; CS, n = 3; CC, n = 34; BA, n = 46) or organoids
inmatrigel (from4HB non-tumor and 8 BA livers) were fixed in 4%
paraformaldehyde (w/v) in PBS (pH 7.2) for 48 h at 4�C, dehydrated
in graded series of alcohol, and cleared in xylene before being
embedded in paraffin. Sections (6 lm in thickness) were prepared
and mounted onto TESPA-coated microscope glass for immuno-
staining. Imageswere takenwith a Nikon Eclipse E600microscope
mounted with a Nikon Digital Camera DXM1200F. Details of im-
munostaining procedures and antibodies are provided in the
Supplementary Materials and Methods.

Protocols on histological analysis, RT-PCR analysis, quantita-
tive RT-PCR analysis, transmission electron microscopic analysis,
rhodamine transport assay, forskolin-induced swelling assay,
TUNEL assay and measurement of organoid growth are reported
in the Supplementary Materials and Methods.

Results
Liver organoids from patients with BA exhibit aberrant
growth and morphology
Cells from the cholangiocyte lineage of mice and humans can be
cultured in the form of three-dimensional organoids.13–15 We
used a stem cell type of organoid protocol13 rather than a
cholangiocyte-type protocol to more broadly explore whether
organoids from patients with BA would differ from control
organoids, for example with regard to differences in chol-
angiocytic vs. hepatocytic differentiation potential. Furthermore,
this protocol has been successfully used to decode phenotypes
from another cholangiopathy, Alagille syndrome (ALGS).13,15 We
established organoids from liver biopsies of 14 patients with BA
at the time of Kasai, and as control organoids from liver biopsies
of children with non-BA liver diseases including non-tumor liver
of HB (n = 4); infantile CS (n = 4) and CC (n = 7) (organoid
establishment, Fig. 1A; patient information, Fig. S1). Organoids
grew from each patient type. In total 75 organoids were estab-
lished from the 14 patients with BA, 19 organoids from the 4
patients with HB, 10 organoids from the 4 patients with CS, and
17 organoids from the 7 patients with CC.

Organoids from the patients with HB, CS and CC (referred to
as “control” organoids) showed normal growth, whereas the
majority of BA organoids exhibited aberrant growth and
morphology (Fig. 1B,C). Small organoids appeared from controls
in 3–5 days, and grew into large, well-expanded cystic structures
with a single outer layer of epithelial cells in 20 to 30 days
(Fig. 1B). Control organoids were passaged for sub-culturing
when they grew beyond the size limit (between 20 to 30 days)
20 vol. 73 j 1391–1403
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Fig. 1. Liver organoids from patients with BA exhibit aberrant morphology. (A) Schematic diagram of liver organoid establishment from liver biopsies. (B)
Representative bright field images of the organoid cultures from liver biopsies of a patient with HB (control) (upper set) and a patient with BA (lower set). Marked
and highlighted organoids (broken lined squares) are shown at high magnification to the right. Histological sections of the control organoid, the BA organoids “a,
b, c and d” (a1–a3, c1–2 were consecutive sections of organoids “a” and “c”, respectively) are shown. The epithelial cell layers (highlighted) of the control and BA
organoids are shown at high magnification to the right. (C) Growth curve (organoid size) of P0 (passage zero) primary organoids of control (HB, n = 4; CC, n = 2)
and BA (n = 6) patients (*p <0.05, Student's t test). (D) ZO-1 staining of control and BA organoids. P0 primary organoids of HB (n = 4) and BA (n = 8) were included
for the morphological, histological and ZO-1 immunostaining. (E) Representative images of ZO-1 and KRT19 co-staining of bile ducts of patients with HB (n = 2),
CC (n = 2) and BA (n = 6). BA, biliary atresia; CC, choledochal cyst; CS, cholestasis; HB, hepatoblastoma. (This figure appears in color on the web.)
and could be maintained in culture for more than 6 months,
frozen and re-established after freezing. Control organoids
expanded at the pace expected for healthy organoids13 and
developed a spherical shape with a cuboidal single-cell layer of
epithelial cells and a single vacuole inside (Fig. 1B). BA organoids,
in contrast, while appearing in 3–5 days, were irregular in shape
and loosely packed and grew less well, frequently appearing
either as poorly expanded structures with multiple vacuoles and
a thick cell layer (“multi-vacuole organoids”) (Fig. 1B(a) and
1B(a1–a3)) or as unexpanded cell clusters with an irregular
multicellular outer cell layer (“unexpanded organoids”)
(Fig. 1B(b–d) and 1B(b1–c2)). 50–85% of the BA organoids fell
into the “unexpanded” category and 15–50% of the BA organoids
Journal of Hepatology 20
belonged to the “multi-vacuole” category, while all of the control
organoids qualified as normal (Fig. 1B). Due to their slow growth
(Fig. 1C), no passage was needed after 90 days in culture for BA
organoids; in fact, BA organoids, in contrast to control organoids,
could not be dissociated into single cells for sub-culturing and
could not be passaged. To explore the growth differences further,
we performed immunostaining for Ki67 and the TUNEL assay to
assess proliferation and cell death, respectively. The percentage
of Ki67 immuno-positive proliferative cells in BA organoids
was significantly lower than in control organoids (mean ± SEM:
15.9 ± 2.1 vs. 28.6 ± 2.4; p <0.05) (Fig. S2A). However, no
significant difference in cell death was observed, as determined
by TUNEL staining (Fig. S2A; Fig. S2B).
20 vol. 73 j 1391–1403 1393
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The aberrant morphology of the BA organoids may indicate
problems in cell polarity, and to assess this, we first analyzed the
distribution of Zona occludens 1 (ZO-1), a marker for tight
junctions at apical intercellular junctions. In control organoids,
ZO-1 formed a smooth layer at the apical side of the cells as
expected, while the ZO-1 distribution was scattered in the BA
organoids, without a clear apical predominance (Fig. 1D). A
scattered ZO-1 distribution without clear apical predominance
was also evident in the biliary epithelia of patients with BA
(n = 6), while biliary epithelia from control livers (HB and CC)
showed a predominantly apical ZO-1 immunoreactivity (Fig. 1E).
Furthermore, cystic fibrosis transmembrane conductance regu-
lator (CFTR) immunohistochemistry revealed that the polarized
expression of CFTR at the luminal side in control organoids was
1394 Journal of Hepatology 20
strongly reduced in BA organoids, which had a lower level and
more even distribution of CFTR in the cells (Fig. S2C1). Similarly,
the expression of secretin receptor (SCTR) at the extraluminal
surface in control organoids was replaced with a more diffuse
distribution in the BA organoids (Fig. S2D). The polarized
expression of gamma glutamyltransferase (GGT) and solute car-
rier family 10 member 2 (SLC10A2, aka ASBT) at the intraluminal
side in control organoids was also largely absent in the BA
organoids (Fig. S2E; Fig. S2F).

To functionally assess cell polarity, we tested the activity of
CFTR, using the Forskolin swelling assay.16 Control organoids
underwent swelling by 11 ± 0.02% (Mean ± SD) following 30 min
of Forskolin stimulation, while Forskolin failed to induce BA
organoid swelling (Fig. S3A), indicating that CFTR activity was
20 vol. 73 j 1391–1403
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abrogated in BA organoids. In an attempt to test the activity of
multidrug resistance protein 1 (MDR1), which encodes a trans-
membrane export pump in cholangiocytes17 and pumps
Journal of Hepatology 20
compounds into the lumen of organoids,18 we added the MDR1
fluorescent substrate Rhodamine 123 (R 123) to the culture
medium. In the presence of verapamil, which blocks MDR1
20 vol. 73 j 1391–1403 1395
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activity, as expected, there was no accumulation of R 123 in the
control organoids (Fig. S3B). In contrast, R 123 accumulated in
the lumen of BA organoids in the presence of verapamil, which
may be a result of dysfunctional tight junction organization in
the BA organoids.

We then used transmission electron microscopy (TEM) to gain
further insights into cellular organization. TEM analysis showed
normal basal-apical polarity in control organoids, as demon-
strated by the presence of pinocytic vesicles, monolayer of cells
with tight junctions, lateral inter digitation, apical microvilli, and
primary cilia; all typical characteristics of biliary epithelial cells19

(Fig. S4A–F). In contrast, tight junctions were not observed in BA
organoids (Fig. S5A). To corroborate these findings, we con-
ducted TEM on histological sections from bile ducts of patients
with BA and HB. Similar to the situation in the organoids, tight
junctions were observed in the bile ducts of HB but not of BA
livers (Fig. S5B). In sum, these data reveal specific changes in
morphology and apical-basal organization in organoids from
patients with BA.

Organoids from RRA-infected mice show morphological
aberrations similar to those observed in patients with BA
We were next interested in exploring whether morphological
alterations could be observed in organoids from RRA-infected
mice, a well-established experimental BA model.12 RRA inocu-
lation of mice (Fig. 2A) produced the expected symptoms
(smaller body size, jaundice, extrahepatic bile duct atresia,
enlarged gallbladder and fibrosis at the portal areas and inter-
lobular regions of the livers) (Fig. 2B). ZO-1 immunohistochem-
istry showed a scattered ZO-1 distribution without a clear apical
predominance in the RRA-infected biliary epithelia, in contrast to
the predominantly apical ZO-1 immunoreactivity in the non-
infected control liver (Fig. 2C). Organoids from the RRA-
infected mice (referred to as RRA organoids) were established
150 days after viral infection and exhibited aberrant morphology,
similar to that observed in organoids from patients with BA.
Specifically, RRA organoids showed slow growth and produced
spheres with multiple vacuoles or a multicellular outer layer, or
alternatively appeared as unexpanded cell clusters of irregular
shape (Fig. 2D). In contrast, organoids from non-infected mice
showed the growth characteristics expected for wild-type mouse
organoids14 (Fig. 2D). Together, these data show that organoids
from RRA-infected mice exhibit an aberrant morphology similar
to that observed in organoids from patients with BA.

Organoids from patients with BA transcriptomically shift
from a cholangiocytic towards a hepatocytic fate
We subjected 121 organoids from patients with BA and controls
(HB, CS and CC) to bulk transcriptome analysis20 (analysis
pipeline and quality control, Fig. S6A–C). Uniform manifold
profiles of 121 organoids (from Fig. 3A) along with the bulk transcriptome from liv
first one) and 4 with BA (labelled as HB_Liver and BA_Liver, respectively); each d
online. (D) Heatmap showing the mRNA expression levels of total genes (n = 5,
Boxplot showing the mRNA expression levels of topmost beta-amyloid pathway-
UMAP plot showing the bulk transcriptome expression profiles of organoids from
organoid. For a complete gene list, see Table S4. (G) Heatmap showing the mRN
organoids when compared to control. (H) Boxplot showing the mRNA expression
infected mouse livers at p <0.05 (2-tailed Student's t test). (I) Expression validati
form 2 control mouse livers and 4 BA mouse livers). Logarithmic values of the rel
The relative expression of genes in normal organoids were arbitrarily regarded as
gene; HB, hepatoblastoma; RRA, rhesus rotavirus A; UMAP, uniform manifold ap
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approximation and projection (UMAP) analysis revealed that the
“multi-vacuole” and “unexpanded” organoid transcriptomes
appeared as 2 separate clusters although with some internal
heterogeneity, which may reflect the different morphologies and
sizes of BA organoids. The 2 BA clusters were well-separated
from the HB, CS and CC organoid clusters (Fig. 3A; principal
component analysis [PCA] Fig. S7A). There was also some het-
erogeneity in the control clusters, probably related to differences
in age and disease severity.

A heatmap of 1,356 differentially expressed genes (DEGs)
between BA and control organoids revealed 4 groups of genes
that differed between the control (HB, CS and CC) and BA orga-
noids. The transcriptomic profiles for the “unexpanded” and
“multi-vacuole” BA organoid transcriptomes were quite distinct
(Fig. 3B). The “unexpanded” transcriptomes showed the largest
gene expression differences compared to the controls, while the
“multi-vacuole” transcriptomes were closer to the control tran-
scriptomes and in particular to the CS transcriptomes (Fig. 3B).
The HB, CS and CC transcriptomes exhibited less but distinct
transcriptomic differences, with some outlier organoids, partic-
ularly in the HB and CC controls. The most high-ranking gene
ontology (GO) categories and pathways for BA organoids
(Fig. S7B–D) include lysosome organization, bile acid metabolic
process and regulation of cell proliferation.

Both cholangiocytes and hepatocytes originate from hepato-
blast progenitors,21 and we observed expression of the adult
stem cell markers LGR5 and PROM1 in organoids (Fig. S8A). We
next assessed whether genes involved in hepatobiliary differ-
entiation22,23 were differentially expressed. Control organoids
expressed markers for liver progenitors (AFT, EPCAM, LGR5,
PROM1), bile duct cell fate (CFTR, KRT7, KRT19, SOX9) and the
hepatocyte lineage (HNF4A, TBX3) (Fig. S8A). Single-cell RNA
sequencing of control liver (HB) organoids revealed that
approximately 88% and 12% of the cells were classified as chol-
angiocytes and hepatoblasts, respectively (Fig. S8B,C). Further-
more, the TACSTD2 gene, which encodes the TROP2 protein that
was recently shown to be a marker for cells that can give rise to
bipotent organoids,24 was expressed both in control (HB; CC; CS)
and BA organoids (Fig. S8D), suggesting that both control and BA
organoids were derived from a common progenitor cell type. The
BA organoids showed altered expression of a number of hep-
atobiliary genes. Several genes involved in cholangiocyte devel-
opment were downregulated in BA organoids, including FOXA1,
JAG1, OPN3, RBPJ and SOX9, while genes involved in hepatocyte
development, including ALB, APOA2, HNF4A, IL6R and, TTR, were
upregulated (Fig. 3C; additional gene examples, Fig. S8E). Sig-
nificant downregulation of KRT19 and upregulation of ALB,
HNF4A and TTR mRNA expression was demonstrated by qPCR
(Fig. 3D). There was a trend towards downregulation of SOX9, but
this did not reach statistical significance. To corroborate
er tissues of 2 patients with HB (second HB_liver sample is overlapping with the
ot represent organoids and liver samples. For a complete gene list, see Table S4
462) that are differentially expressed in BA livers compared to HB control. (E)
related genes in BA and control livers at p <0.05 (2-tailed Student's t test). (F)
RRA-infected (ExpBA) and non-infected mice (Control); each dot represents 1
A expression levels of total DEGs (n = 1,598) in mouse RRA experimental BA
levels of topmost beta-amyloid pathway-related genes in RRA-infected vs. non-
on by qPCR for beta-amyloid genes in mouse organoids (P0 primary organoids
ative expression of genes between BA and normal mouse organoids are shown.
1.0 (*p <0.05, Student's t test). BA, biliary atresia; DEG, differentially expressed
proximation and projection. (This figure appears in color on the web.)
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expression differences at the protein level, immunostaining for
KRT19 and HNF1B protein was reduced, while HFN4A immuno-
reactivity was elevated in BA organoids (Fig. 3E). The presence of
HNF4A/KRT19 double-positive bile duct cells was only detected
in BA livers (n = 6), but not in control HB livers (n = 4) (Fig. 3F). In
sum, BA organoids display a shift towards a hepatocytic gene
expression profile.

Organoids from patients with BA and RRA-infected mice
show beta-amyloid-associated transcriptional signatures
The GO and pathway analysis revealed DEGs involved in Alz-
heimer's disease (AD) secretase (P00003) and AD-presenilin
(P00004) pathways to be differentially expressed in the BA orga-
noids (Fig. S7C,D). To further address a potential link to
beta-amyloid biology, supervised marker analysis was carried out
using marker genes from amyloid-related AD pathways (P00003,
P00004 and hsa05010) and from the literature22,25–30 (for review
see31), and a total of 111 such genes were differentially regu-
lated in BA organoids (Fig. S9). DEGs include A2M, APOA1,
APOA2, APOE, DEPTOR, HMGCS2, PSEN1 and PSEN2 (Fig. 4A;
additional genes, Fig. S9). The differential expression of A2M,
APOA2 and APOE was further validated by qPCR (Fig. 4B).

To corroborate thesefindings,we next analyzed gene expression
changes inbulk transcriptomes from liverbiopsiesof 4patientswith
BA and 2 with HB. The 4 BA patient transcriptomes clustered
distinctly from the 2 HB patient transcriptomes but closer to BA
“unexpanded” in a UMAP analysis (Fig. 4C; PCA analysis, Fig. S10A).
Aheatmapof5,462DEGsbetweenBAandcontrol livers (pvaluecut-
off <−0.05) corroborated the differences between BA and HB tran-
scriptomes, although 1 BA liver transcriptome clearly represents an
outlier (Fig. 4D), for reasons that are not understood. A number of
genes associated with beta-amyloid biology were differentially
regulated in the BA livers, including ADAM9, APOE, DEPTOR, ITPR3,
MMP7, PSEN1 and PSEN2 (Fig. 4E; complete list of differentially
expressed beta-amyloid biology genes, Fig. S10B). Notably, matrix
metalloprotease 7 (MMP7), which has recently been identified as a
marker for BA, was the most differentially expressed.32 The most
high-ranking GO categories and pathways (Fig. S10C,D) include
actin cytoskeleton organization, integrin-mediated signaling and
angiogenesis pathways.

To further assess a potential link to deregulated beta-amyloid
processing, we analyzed bulk transcriptomes of organoids from
control and RRA-infected mice. The transcriptomes from 5 con-
trol organoids (from non-infected mice) and 6 RRA organoids
formed distinct clusters in a UMAP analysis (Fig. 4F; PCA analysis,
Fig. S11A). Differential gene expression analysis revealed 1,598
DEGs (p-value cut-off <−0.05) and underscored the heatmap
clustering of the control and RRA organoids (Fig. 4G). Several
genes associated with beta-amyloid biology were differentially
regulated, including App, Apoa2, Apoe, Deptor, Lrp1, Psen1, Psen2
and Sdhc; (Fig. 4H; Fig. S11B). qPCR analysis validated the upre-
gulation of Apoa2, Apoe, Deptor and Psen2 in RRA organoids
(Fig. 4I). The most high-ranking GO categories and pathways
(Fig. S11C,D) include response to virus, blood coagulation and
lipid metabolic process.

The transcriptomic data from the human liver and RRA
organoids also reveal changes in expression of hepatobiliary
genes, in keeping with the results presented for BA organoids in
Fig. 3A. Thus, KRT8 showed increased expression in BA livers,
while OPN3, HNF1B, HHEX, FOXA1, FOXA2 and HES1 were down-
regulated (Fig. S12A). Similarly, in the mouse RRA organoids,
1398 Journal of Hepatology 20
Sox9, Jag1, Hhex, and Hnf1b were downregulated while the he-
patocyte markers Hnf4a, Apoa2, and Ttr were upregulated
(Fig. S12B; qPCR validation, Fig. S12C). In conclusion, the tran-
scriptomic data indicate that beta-amyloid metabolism may be
altered in BA.

Accumulation of beta-amyloid deposits around bile ducts in
livers from patients with BA and RRA-infected mice as well as
around BA organoids
The data described previously indicate that APP processing or
metabolism may be altered in BA. The beta-amyloid peptide (Ab
peptide) is generated by b- and c-secretase processing of APP;
the Ab peptide is the main constituent in beta-amyloid, which
accumulates as plaques in diseases such as AD and cerebral
amyloid angiopathy (CAA).33 To learn whether beta-amyloid
deposits are present in livers from patients with BA, beta-
amyloid immunoreactivity was analyzed (using an antibody
recognizing amino acid residues 17-24 of APP) in histological
sections from BA livers (n = 46) and livers of HB (n = 5), CS (n = 3)
and CC (n = 34) as control. Beta-amyloid deposits were specif-
ically found in the BA livers, where they localized within the
biliary epithelial cells or in the bile duct lumen (Fig. 5A, Fig. S13).
Occasionally, amyloid deposits were detected at non-bile duct
liver cells in close proximity to the bile ducts (Fig. 5A). On
average, 87% ± 18% of bile ducts in BA livers were beta-amyloid
immunopositive, while no immunoreactivity was observed in
the controls.

In RRA-infected mice, beta-amyloid deposits were found in
biliary epithelial cells as well as in non-bile duct liver cells in
close proximity to bile ducts (Fig. 5B). No beta-amyloid immu-
noreactivity was detected in the bile ducts of non-infected con-
trol livers (Fig. 5B). Finally, we show that beta-amyloid was
observed around BA but not HB organoids (Fig. 5C). In conclu-
sion, beta-amyloid accumulates around bile ducts in livers of
patients with BA and RRA-infected mice, as well as around BA
organoids.

Exogenous beta-amyloid induces BA-related morphological
and transcriptional changes in liver organoids
To test whether beta-amyloid alone was sufficient to replicate
morphological and transcriptional changes in organoids, we
treated organoids from human control livers with Ab peptide
1–42 for 7 days or with DMSO alone as untreated control. Control
organoids exposed to beta-amyloid were generally very small
and appeared as poorly expanded spheres with small vacuoles or
with multiple vacuoles surrounded by a monolayer of cells
(Fig. 6A).

Bulk transcriptomes from beta-amyloid-treated control
organoids clustered close to “multi-vacuole” BA patient orga-
noid transcriptomes (organoid data are derived from Fig. 3A),
while untreated organoids showed a normal morphology
(Fig. 6A) and transcriptomically localized further away from the
BA transcriptomic clusters and near the control (HB) tran-
scriptome clusters (Fig. 6B; PCA analysis, Fig. S14A). Differential
gene expression analysis revealed 6,495 DEGs (p-value cut-off
<−0.05) and corroborated the UMAP clustering (Fig. 6C; for GO
analysis see Fig. S14B,C), although there was some divergence
among the beta-amyloid-treated organoids. SOX9 and HHEX
were among the downregulated genes, while HNF4A, KRT18,
and KRT8 were among the upregulated genes in organoids upon
beta-amyloid exposure (Fig. 6D), indicating a shift towards a
20 vol. 73 j 1391–1403
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Fig. 5. Immunohistochemistry staining for beta-amyloid in human and mouse liver tissues, and in human organoids. (A) Representative images of co-
staining of liver tissue sections from BA and control (HB; CC; CS) patients with beta-amyloid (red) and KRT19 (green) antibodies. (B) Representative images of co-
staining of liver tissue sections from RRA-infected (n = 4) and non-infected control mouse (n = 3) livers with beta-amyloid (red) and KRT19 (green).
(C) Representative images of staining of organoids from control (HB; n = 4) and BA (n = 6) with beta-amyloid (red). DAPI staining is shown in blue. BA, biliary atresia;
CC, choledochal cyst; CS, cholestasis; DEG, differentially expressed gene; HB, hepatoblastoma; RRA, rhesus rotavirus A. (This figure appears in color on the web.)
hepatocytic fate. A number of genes involved in beta-amyloid
biology were differentially regulated in the beta-amyloid-
treated control organoids (Fig. 6E). Cross-comparison of the
DEGs involved in beta-amyloid biology between beta-amyloid-
treated control organoids and patient-derived BA organoids
(136 and 111 genes from Fig. S9 and Fig. S15, respectively)
revealed 16 genes that were differentially expressed in both
settings (Fig. 6F). In sum, the data show that exposure of con-
trol organoids to beta-amyloid induces morphological and
transcriptomic changes reminiscent of those observed in BA
organoids.

Discussion
BA is a severe liver disease in which bile flow obstruction leads to
progressive fibrosis. Liver transplantation is the final outcome if
Kasai portoenterostomy does not alleviate the problems. Mean-
while, the diagnosis of BA has remained problematic; improved
diagnosis is important for stratifying patients and guiding
treatment decisions.

In this report, we use a combination of transcriptomics and
organoid biology to gain new insights into the molecular
Journal of Hepatology 20
underpinnings of BA. Unexpectedly, beta-amyloid deposition
was observed around the bile ducts of both patients with BA and
in RRA-infected mice. BA thus joins the ranks of diseases char-
acterized by beta-amyloid aggregation; a list comprising AD and
CAA, but also inclusion body myositis34 and dementia with Lewy
bodies (for review see35). The link between beta-amyloid depo-
sition and BA is corroborated by transcriptional analysis of BA
patient liver biopsies and liver organoids, as well as of RRA-
infected mouse livers, which show altered expression of
several genes involved in APP processing and the AD-secretase
pathway. Liver organoids from patients with BA or RRA-
infected mice displayed an aberrant morphology, and similar
aberrations could be induced in human control organoids by
exposing them to exogenous beta-amyloid. The latter finding
may indicate that beta-amyloid accumulation contributes to bile
duct pathology in BA, but more research is required to address
whether beta-amyloid deposits are a cause, a cell-stress medi-
ator, or a bystander effect, resulting from other upstream
dysregulated processes.

The beta-amyloid deposits were found specifically in liver
biopsies from patients with BA, and not in livers from patients
20 vol. 73 j 1391–1403 1399
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with HB, CS or CC, and could thus be considered as a new
diagnostic feature for BA. The need for improved diagnosis is
underscored by the fact that outcomes are improved when sur-
gery is performed at an early age36–38 (for review see5). Advances
in BA diagnosis, including altered expression of specific miRNAs
(miR-140-3p; miR-200b/429 and MiR-4429)39–41 and elevated
serum levels of MMP7 have been shown to be highly prognostic
for BA.32,42 While MMP7 analysis can be carried out on blood
samples, we do not yet know whether this is feasible for beta-
amyloid. However, we believe that analysis of beta-amyloid
may have the potential to become a complementary assay to
further optimize diagnosis. Sensitive assays to monitor minute
quantities of beta-amyloid have been developed in AD research
(for review see43) and these assay systems may be used to derive
information from extremely small biopsies of patients with pu-
tative BA in the future; needle biopsies, although invasive, are
frequently carried out for routine pathology. It is interesting to
note that MMP7 was the most highly upregulated gene from the
DEGs in our transcriptomic analysis from BA livers, which in-
dicates that the high MMP7 serum levels32,42 are a result of
increased mRNA expression of the MMP7 gene.

The organoids from both patients with BA and RRA-infected
mice grew more slowly and displayed an aberrant morphology,
characterized by poor expansion with multiple vacuoles and a
thick, frequently multicellular outer cell layer. We observed 2
distinct morphologies, “multi-vacuole” and “unexpanded”, and
the distinction between these 2 types was also manifested at the
transcriptome level, where the “unexpanded” transcriptomes
were the most distantly related to the controls. The aberrant
organoid morphology appears specific for BA, i.e. it was only
observed in BA organoids, and not in organoids from patients
with HB, CS or CC. Liver organoids have previously been used to
model pathogenesis in the dish for liver diseases with a clear-cut
monogenic basis, such as a1-antitrypsin-deficiency and
ALGS.13,15 Our data show that they can also be used to study a
liver disease with more complex etiology, and with only a few
characterized susceptibility genes, such as ADD3, EFEMP1 and
PKD1L1.9,11 It will be interesting to explore whether an organoid
phenotype can be induced by other agents that have been
implicated in BA pathogenesis, for example viral and bacterial
infections, toxins, and inflammation.1,5 Notably, the BA-inducing
effects of biliatresone in animal models have recently been
recapitulated using cholangiocyte mouse organoids, and these
studies also reveal cell polarity problems in the biliatresone-
treated organoids.44,45 Conversely, it will be important to
address whether the observed morphological aberrations can be
revoked, which would make the BA organoids excellent tools as a
drug-screening platform for novel BA therapeutic approaches.

The aberrant morphology in BA organoids was accompanied
by dysregulated apical-basal polarity in the cells of the outer
layer of the organoid as well as in BA livers, as determined by
altered localization of apical-basal markers such as ZO-1, CFTR,
SCTR, GGT and ASBT. Disturbed ZO-1 distribution, coupled with
organoid. For a complete gene list, see Table S4. (C) Heatmap showing the mR
compared to untreated control organoids. (D) Boxplot for the mRNA expression
control organoids at p <0.05 (2-tailed Student's t test). (E) Boxplot for the mRN
amyloid-treated and untreated control organoids at p <0.05 (2-tailed Student's
organoids derived from patients with BA (Fig. S9) vs. beta-amyloid-treated organ
uniform manifold approximation and projection. (This figure appears in color on
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dysregulated expression of several apical-basal genes, was also
noted in patients suffering from ALGS.15 This raises a more
general question of possible similarities, notably with regard to
apical-basal polarity, between ALGS and BA, 2 cholangiopathies
with similarities in pathology. The transcriptomic analysis of the
BA liver organoids indicates that the cholangiocyte phenotype
may be partially shifted towards a hepatocytic fate, and the
biliary marker SOX9 expression is also downregulated in
ALGS,15,46 further supporting a possible mechanistic link be-
tween these 2 cholangiopathies.

In conclusion, our data reveal aberrant morphology and
apical-basal organization in BA organoids, as well as a partial
shift from a cholangiocyte towards a hepatocyte transcriptional
profile and changes in expression of genes related to beta-
amyloid biology. We also present a new pathobiological feature
of BA – beta-amyloid deposition around bile ducts in BA livers.
While our data indicate that beta-amyloid can induce the
observed morphological changes in organoids, more work is
required to understand whether beta-amyloid accumulation is
causative in the disease process or a bystander effect resulting
from other disease-causing mechanisms, for example problems
in apical-basal organization.
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